DuraMatrix
Collagen Dura Substitute Membrane

• Onlay or Sutured Implantation
• Excellent Handling Characteristics
• Strong and Conformable
• Balanced Resorption
• Watertight Material
• Highly Purified Type I Collagen
DuraMatrix represents the next generation in dural substitute technology.

Indication

DuraMatrix is indicated for use as a dural substitute for the repair of dura mater.

Product Overview

DuraMatrix is a conformable and resorbable membrane matrix engineered from highly purified type I collagen. DuraMatrix is designed with a thickness similar to that of native dura. DuraMatrix has excellent handling characteristics, is flexible and conforms to the contour of the defect. The unique conformability properties of the membrane combined with its mechanical strength allow DuraMatrix to be applied as either an onlay membrane or sutured in place. In a large scale animal study and clinical study, DuraMatrix was shown to facilitate healing with balanced in vivo resorption of the implant and regeneration of host tissue.

Advantages

- Onlay or Sutured Implantation
- Balanced Resorption
- Highly Purified Type I Collagen
- Excellent Handling Characteristics

Histological evidence of DuraMatrix partially resorbed and being replaced with new tissue twelve weeks post-operative, Trichome, mag. x 40

Conformable Strong Watertight
Animal Model

Summary of Animal Duraplasty Model\(^1\) (Fig.1)

At 12 weeks, it was observed that there was negligible adhesion of the implants to the underlying cortex of the brain, and that the dural defects were completely or almost completely repaired. There was complete or nearly complete incorporation of DuraMatrix with the native dura at the edges of the defects. No white blood cells were found in the cerebral spinal fluid at 12 weeks after implantation.

Under the microscope, at 12 weeks there was approximately 40% of the implant remaining, which was balanced with the regeneration of new tissue. Evaluation of gross and microscopic data for sutured and non-sutured DuraMatrix at 2, 7, and 12 weeks showed no significant difference. Under the microscope and in agreement with gross observations, DuraMatrix exhibited negligible adhesion to the cortex, but good anchorage to the native dura at the edges of the defects. By 12 weeks, host fibroblasts had invaded the implants and produced new collagen as DuraMatrix was resorbed. Neovascularization of the dura substitute was evident. Inflammatory changes or foreign body responses were minimal.

1. Ulrich JB and Hamilton AJ. ID Number 02-6-1. In Vivo Evaluation of DuraMatrix Dura Substitute. The University of Arizona Health Sciences Center.
2. Grotenhuis JA. Clinical Investigation. Verification of Safety and Performance of DuraMatrix Collagen Dura Substitute Membrane. Radboud University Medical Center.

Ordering Information

DuraMatrix images are not shown in their actual size (scale 1:1)

<table>
<thead>
<tr>
<th>REF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDSM11</td>
<td>2.5 cm x 2.5 cm</td>
</tr>
<tr>
<td>CDSM13</td>
<td>2.5 cm x 7.5 cm</td>
</tr>
<tr>
<td>CDSM22</td>
<td>5.0 cm x 5.0 cm</td>
</tr>
<tr>
<td>CDSM33</td>
<td>7.5 cm x 7.5 cm</td>
</tr>
<tr>
<td>CDSM45</td>
<td>10.0 cm x 12.5 cm</td>
</tr>
</tbody>
</table>